
Audio System Toolbox™

User’s Guide

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Audio System Toolbox™ User’s Guide
© COPYRIGHT 2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2016 Online only New for Version 1.0 (Release 2016a)
September 2016 Online only Revised for Version 1.1 (Release 2016b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Dynamic Range Control
1

Dynamic Range Control . 1-2
Linear to dB Conversion . 1-3
Gain Computer . 1-3
Gain Smoothing . 1-5
Make-Up Gain . 1-8
dB to Linear Conversion . 1-9
Apply Calculated Gain . 1-9
Example: Dynamic Range Limiter . 1-10

MIDI Control for Audio Plugins
2

MIDI Control for Audio Plugins . 2-2
MIDI and Plugins . 2-2
Use MIDI with MATLAB Plugins . 2-2

Musical Instrument Digital Interface
3

Musical Instrument Digital Interface (MIDI) 3-2
About MIDI . 3-2
MIDI Control Surfaces . 3-2
Use MIDI Control Surfaces with MATLAB and Simulink . . . 3-3

iii

Use the Audio Test Bench
4

Audio Test Bench Walkthrough . 4-2
Choose Object Under Test . 4-2
Run Audio Test Bench . 4-4
Debug Source Code of Audio Plugin 4-5
Open Scopes . 4-6
Configure Input to Audio Test Bench 4-6
Configure Output from Audio Test Bench 4-7
Synchronize Plugin Property with MIDI Control 4-8
Play the Audio and Save the Output File 4-9
Validate and Generate Audio Plugin 4-9

Audio Plugin Example Gallery
5

Audio Plugin Example Gallery . 5-2
Audio Plugin Examples . 5-2

Equalization
6

Equalization . 6-2
Equalization Design Using Audio System Toolbox 6-2
EQ Filter Design . 6-2
Lowpass and Highpass Filter Design 6-6
Shelving Filter Design . 6-7

iv Contents

Deployment
7

Functions and System Objects Supported for MATLAB
Coder . 7-2

Functions and System Objects Supported for MATLAB
Compiler . 7-4

Desktop Real-Time Audio Acceleration with MATLAB
Coder . 7-6

Audio I/O User Guide
8

Run Audio I/O Features Outside MATLAB and Simulink . . . 8-2

Block Example Repository
9

Decrease Underrun . 9-2

Block Example Repository
10

Suppress Loud Sounds . 10-2

Attenuate Low-Level Noise . 10-5

Suppress Volume of Loud Sounds . 10-8

Gate Background Noise . 10-11

v

Output Values from MIDI Control Surface 10-14

Apply Frequency Weighting . 10-16

Compare Loudness Before and After Audio Processing . . 10-18

Two-Band Crossover Filtering for a Stereo Speaker
System . 10-20

Mimic Acoustic Environments . 10-22

Perform Parametric Equalization . 10-24

Perform Octave Filtering . 10-26

Read from Microphone and Write to Speaker 10-28

Channel Mapping . 10-31

Communicate Between a DAW and MATLAB using
UDP

11
Communicate Between a DAW and MATLAB Using UDP . . 11-2

Real-Time Parameter Tuning
12

Real-Time Parameter Tuning . 12-2
Programmatic Parameter Tuning . 12-2

vi Contents

Sample Audio Files
13

Sample Audio Files . 13-2

vii

1

Dynamic Range Control

1 Dynamic Range Control

Dynamic Range Control
Dynamic range control is the adaptive adjustment of the dynamic range of a signal.
The dynamic range of a signal is the logarithmic ratio of maximum to minimum signal
amplitude specified in dB.

You can use dynamic range control to:

• Match an audio signal level to its environment
• Protect AD converters from overload
• Optimize information
• Suppress low-level noise

Types of dynamic range control include:

• Dynamic range compressor — Attenuates the volume of loud sounds that cross a
given threshold. They are often used in recording systems to protect hardware and to
increase overall loudness.

• Dynamic range limiter — A type of compressor that brickwalls sound above a given
threshold.

• Dynamic range expander — Attenuates the volume of quiet sounds below a given
threshold. They are often used to make quiet sounds even quieter.

• Noise gate — A type of expander that brickwalls sound below a given threshold.

This tutorial shows how to implement dynamic range control systems using the
compressor, expander, limiter, and noiseGate System objects from Audio System Toolbox.
The tutorial also provides an illustrated example of dynamic range limiting at various
stages of a dynamic range limiting system.

The diagram depicts a general dynamic range control system.

In a dynamic range control system, a gain signal is calculated in a sidechain and then
applied to the input audio signal. The sidechain consists of:

1-2

 Dynamic Range Control

• Linear to dB conversion: x x
dB

Æ

• Gain computation, by passing the dB signal through a static characteristic equation,
and then taking the difference: g x xc sc dB= -

• Gain smoothing over time: g g
c s

Æ

• Addition of make-up gain (for compressors and limiters only): g g
s m

Æ

• dB to linear conversion: g gm linÆ

• Application of the calculated gain signal to the original audio signal: y g xlin= ¥

Linear to dB Conversion

The gain signal used in dynamic range control is processed on a dB scale for all dynamic
range controllers. There is no reference for the dB output; it is a straight conversion:
x x

dB
= 20 10log () . You might need to adjust the output of a dynamic range control system

to the range of your system.

Gain Computer

The gain computer provides the first rough estimate of a gain signal for dynamic range
control. The principal component of the gain computer is the static characteristic. Each
type of dynamic range control has a different static characteristic with different tunable
properties:

• Threshold — All static characteristics have a threshold. On one side of the
threshold, the input is given to the output with no modification. On the other side
of the threshold, compression, expansion, brickwall limiting, or brickwall gating is
applied.

• Ratio — Expanders and compressors enable you to adjust the input-to-output ratio of
the static characteristic above or below a given threshold.

• KneeWidth — Expanders, compressors, and limiters enable you to adjust the knee
width of the static characteristic. The knee of a static characteristic is centered at
the threshold. An increase in knee width creates a smoother transition around the
threshold. A knee width of zero provides no smoothing and is known as a hard knee. A
knee width greater than zero is known as a soft knee.

1-3

1 Dynamic Range Control

In these static characteristic plots, the expander, limiter, and compressor each have a
10 dB knee width.

1-4

 Dynamic Range Control

Gain Smoothing

All dynamic range controllers provide gain smoothing over time. Gain smoothing
diminishes sharp jumps in the applied gain, which can result in artifacts and an
unnatural sound. You can conceptualize gain smoothing as the addition of impedance to
your gain signal.

1-5

1 Dynamic Range Control

The expander and noiseGate objects have the same smoothing equation, because a
noise gate is a type of expander. The limiter and compressor objects have the same
smoothing equation, because a limiter is a type of compressor.

The type of gain smoothing is specified by a combination of attack time, release time, and
hold time coefficients. Attack time and release time correspond to the time it takes the
gain signal to go from 10% to 90% of its final value. Hold time is a delay period before
gain is applied. See the algorithms of individual dynamic range controller pages for more
detailed explanations.

Smoothing Equations

expander and noiseGate

g n

g n g n

g n

g n g n

g

s

A s A c

s

R s R c

s

[]

[] () []

[]

[] () []

[

=

- + -

-

- + -

a a

a a

1 1

1

1 1

nn

if C k g n g n

if C k

if C k g n g

A c s

A

R c

-

Ï

Ì

Ô
Ô

Ó
Ô
Ô

>() > -()
£

>() £

1

1

]

& [] []

& [] ss

R

n

if C k

[]-()
£

1

• αA and αR are determined by the sample rate and specified attack and release time:

a aA
A

R
RFs T Fs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜ = -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
, exp

log()9 9

• k is the specified hold time in samples.
• CA and CR are hold counters for attack and release, respectively.

compressor and limiter

g n
g n g n for g n g n

g ns
A s A c c s

R s R

[]
[] () [] [] []

[] (
=

- + - > -

- + -

a a

a a

1 1 1

1 1)) [] [] []g n for g n g nc c s£ -

Ï
Ì
Ó 1

• αA and αR are determined by the sample rate and specified attack and release time:

a aA
A

R
RFs T Fs T

= -
¥

Ê

Ë
Á

ˆ

¯
˜ = -

¥
Ê

Ë
Á

ˆ

¯
˜exp

log()
, exp

log()9 9

1-6

 Dynamic Range Control

Gain Smoothing Example

Examine a trivial case of dynamic range compression for a two-step input signal. In this
example, the compressor has a threshold of –10 dB, a compression ratio of 5, and a hard
knee.

Several variations of gain smoothing are shown. On the top, a smoothed gain curve is
shown for different attack time values, with release time set to zero seconds. In the
middle, release time is varied and attack time is held constant at zero seconds. On the
bottom, both attack and release time are specified by nonzero values.

1-7

1 Dynamic Range Control

Make-Up Gain

Make-up gain applies for compressors and limiters, where higher dB portions of a signal
are attenuated or brickwalled. The dB reduction can significantly reduce total signal
power. In these cases, make-up gain is applied after gain smoothing to increase the
signal power. In Audio System Toolbox, you can specify a set amount of make-up gain or
specify the make-up gain mode as 'auto'.

The 'auto' make-up gain ensures that a 0 dB input results in a 0 dB output. For
example, assume a static characteristic of a compressor with a soft knee:

1-8

 Dynamic Range Control

x x

x x T
W

x
R

x T
W

W
T

sc dB

dB dB

dB

dB

() =

< -Ê
ËÁ

ˆ
¯̃

+
-Ê

Ë
Á

ˆ
¯
˜ - +Ê
Ë
Á

ˆ
¯
˜

2

1
1

2

2

2

--Ê
ËÁ

ˆ
¯̃

£ £ +Ê
ËÁ

ˆ
¯̃

+
-()

> +Ê
ËÁ

ˆ
¯̃

Ï

Ì

Ô
Ô
Ô
Ô
Ô

Ó

Ô

W
x T

W

T
x T

R
x T

W

dB

dB

dB

2 2

2

ÔÔ
Ô
Ô
Ô

T is the threshold, W is the knee width, and R is the compression ratio. The calculated
auto make-up gain is the negative of the static characteristic equation evaluated at 0 dB:

- =

<

-Ê
Ë
Á

ˆ
¯
˜ -Ê
Ë
Á

ˆ
¯
˜

- £ £

+ - >

Ï

Ì

Ô
Ô
Ô

x

W
T

R
T

W

W

W
T

W

T
T

R

W
T

sc
()0

0
2

1
1

2

2 2 2

2

2

ÔÔÔ

Ó

Ô
Ô
Ô
Ô
Ô

dB to Linear Conversion

Once the gain signal is determined in dB, it is transferred to the linear domain:

glin

gm

= 10 20 .

Apply Calculated Gain

The final step in a dynamic control system is to apply the calculated gain by
multiplication in the linear domain.

1-9

1 Dynamic Range Control

Example: Dynamic Range Limiter

The audio signal described in this example is a 0.5 second interval of a drum track. The
limiter properties are:

• Threshold = –15 dB
• Knee width = 0 (hard knee)
• Attack time = 0.004 seconds
• Release time = 0.1 seconds
• Make-up gain = 1 dB

To create a limiter System object™ with these properties, at the MATLAB® command
prompt, enter:

dRL = limiter('Threshold',-15,...

 'KneeWidth',0,...

 'AttackTime',0.004,...

 'ReleaseTime',0.1,...

 'MakeUpGainMode','property',...

 'MakeUpGain',1);

This example provides a visual walkthrough of the various stages of the dynamic range
limiter system.

1-10

 Dynamic Range Control

Linear to dB Conversion

The input signal is converted to a dB scale element by element.

1-11

1 Dynamic Range Control

Gain Computer

The static characteristic brickwall limits the dB signal at –15 dB. To determine the dB
gain that results in this limiting, the gain computer subtracts the original dB signal from
the dB signal processed by the static characteristic.

Gain Smoothing

The relatively short attack time specification results in a steep curve when the applied
gain is suddenly increased. The relatively long release time results in a gradual
diminishing of the applied gain.

Make-Up Gain

Assume a limiter with a 1 dB make-up gain value. The make-up gain is added to the
smoothed gain signal.

1-12

 Dynamic Range Control

dB to Linear Conversion

The gain in dB is converted to a linear scale element by element.

Apply Calculated Gain

The original signal is multiplied by the linear gain.

1-13

1 Dynamic Range Control

References

[1] Zolzer, Udo. "Dynamic Range Control." Digital Audio Signal Processing. 2nd ed.
Chichester, UK: Wiley, 2008.

[2] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. “Digital Dynamic
Range Compressor Design—A Tutorial And Analysis.” Journal of Audio
Engineering Society. Vol. 60, Issue 6, pp. 399–408.

See Also

Blocks
Compressor | Expander | Limiter | Noise Gate

System Objects
compressor | expander | limiter | noiseGate

More About
• “Multiband Dynamic Range Compression”

1-14

2

MIDI Control for Audio Plugins

2 MIDI Control for Audio Plugins

MIDI Control for Audio Plugins

MIDI and Plugins

MIDI control surfaces are commonly used in conjunction with audio plugins in digital
audio workstation (DAW) environments. Synchronizing MIDI controls with plugin
parameters provides a tangible interface for audio processing and is an efficient approach
to parameter tuning.

In the MATLAB environment, audio plugins are defined as any valid class that derives
from the audioPlugin base class or the audioPluginSource base class. For more
information about how audio plugins are defined in the MATLAB environment, see
“Design an Audio Plugin”.

Use MIDI with MATLAB Plugins

The Audio System Toolbox product provides three functions for enabling the interface
between MIDI control surfaces and audio plugins:

• configureMIDI — Configure MIDI connections between audio plugin and MIDI
controller.

• getMIDIConnections — Get MIDI connections of audio plugin.
• disconnectMIDI — Disconnect MIDI controls from audio plugin.

These functions combine the abilities of general MIDI functions into a streamlined and
user-friendly interface suited to audio plugins in MATLAB. For a tutorial on the general
functions and the MIDI protocol, see “Musical Instrument Digital Interface (MIDI)” on
page 3-2.

This tutorial walks you through the MIDI functions for audio plugins in MATLAB.

2-2

 MIDI Control for Audio Plugins

1. Connect MIDI Device and Then Start MATLAB

Before starting MATLAB, connect your MIDI control surface to your computer and turn
it on. For connection instructions, see the instructions for your MIDI device. If you start
MATLAB before connecting your device, MATLAB might not recognize your device
when you connect it. To correct the problem, restart MATLAB with the device already
connected.

2. Establish MIDI Connections

Use configureMIDI to establish MIDI connections between your default MIDI device
and an audio plugin. You can use configureMIDI programmatically, or you can open
a user interface (UI) to guide you through the process. The configureMIDI UI reads
from your audio plugin and populates a drop-down list of tunable plugin properties. You
are then prompted to move individual controls on your MIDI control surface to associate
the position of each control with the normalized value of each property you select. For
example, create an object of audiopluginexample.PitchShifter and then call
configureMIDI with the object as the argument:

ctrlPitch = audiopluginexample.PitchShifter;

configureMIDI(ctrlPitch)

The Synchronize to MIDI controls dialog box opens with the tunable properties of your
plugin automatically populated. When you operate a MIDI control, its identification is
entered into the Operate MIDI control to synchronize box. After you synchronize
tunable properties with MIDI controls, click OK to complete the configuration. If
your MIDI control surface is bidirectional, it automatically shifts the position of the
synchronized controls to the initial property values specified by your plugin.

2-3

2 MIDI Control for Audio Plugins

To open a MATLAB function with the programmatic equivalent of your actions in the
UI, select the Generate MATLAB Code check box. Saving this function enables you to
reuse your settings and quickly establish the configuration in future sessions.

3. Tune Plugin Parameters Using MIDI

After you establish connections between plugin properties and MIDI controls, you can
tune the properties in real time using your MIDI control surface.

Audio System Toolbox provides an all-in-one app for running and testing your audio
plugin. The test bench mimics how a DAW interacts with plugins.

Open the Audio Test Bench and then enter ctrlPitch in the Object Under Test box.

audioTestBench

When you adjust the controls on your MIDI surface, the corresponding plugin parameter
sliders move. Click to run the plugin. Move the controls on your MIDI surface to hear
the effect of tuning the plugin parameters.

To establish MIDI connections and modify existing ones, click the Synchronize to MIDI
Controls button to open a configureMIDI UI.

Alternatively, you can use the MIDI connections you established in a script or function.
For example, run the following code and move your synchronized MIDI controls to hear
the pitch-shifting effect:

fileReader = dsp.AudioFileReader(...

2-4

 MIDI Control for Audio Plugins

 'Filename','Counting-16-44p1-mono-15secs.wav');

deviceWriter = audioDeviceWriter;

% Audio stream loop

while ~isDone(fileReader)

 input = fileReader();

 output = ctrlPitch(input);

 deviceWriter(output);

 drawnow limitrate; % Process callback immediately

end

release(fileReader);

release(deviceWriter);

4. Get Current MIDI Connections

To query the MIDI connections established with your audio plugin, use the
getMIDIConnections function. getMIDIConnections returns a structure with
fields corresponding to the tunable properties of your plugin. The corresponding values
are nested structures containing information about the mapping between your plugin
property and the specified MIDI control.

connectionInfo = getMIDIConnections(ctrlPitch)

connectionInfo =

 struct with fields:

 PitchShift: [1×1 struct]

 Overlap: [1×1 struct]

connectionInfo.PitchShift

ans =

 struct with fields:

 Law: 'int'

 Min: -12

 Max: 12

 MIDIControl: 'control 1081 on 'BCF2000''

5. Disconnect MIDI Surface

As a best practice, release external devices such as MIDI control surfaces when you are
done.

2-5

2 MIDI Control for Audio Plugins

disconnectMIDI(ctrlPitch)

See Also

Apps
Audio Test Bench

Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | disconnectMIDI | getMIDIConnections

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?”
• “Musical Instrument Digital Interface (MIDI)” on page 3-2
• “Design an Audio Plugin”
• “Host External Audio Plugins”

External Websites
• http://www.midi.org

2-6

http://www.midi.org

3

Musical Instrument Digital Interface

3 Musical Instrument Digital Interface

Musical Instrument Digital Interface (MIDI)

In this section...

“About MIDI” on page 3-2
“MIDI Control Surfaces” on page 3-2
“Use MIDI Control Surfaces with MATLAB and Simulink” on page 3-3

About MIDI

Musical Instrument Digital Interface (MIDI) was originally developed to interconnect
electronic musical instruments. This interface is flexible and has uses in applications far
beyond musical instruments. Its simple unidirectional messaging protocol supports many
different kinds of messaging. One kind of MIDI message is the Control Change message,
which is used to communicate changes in controls, such as knobs, sliders, and buttons.

MIDI Control Surfaces

A MIDI control surface is a device with controls that sends MIDI Control Change
messages when you turn a knob, move a slider, or push a button on its surface. Each
Control Change message indicates which control changed and what its new position is.

Because the MIDI messaging protocol is unidirectional, determining a particular
controller position requires that the receiver listen for Control Change messages that
the controller sends. The protocol does not support querying the MIDI controller for its
position.

The simplest MIDI control surfaces are unidirectional: They send MIDI Control Change
messages but do not receive them. More sophisticated control surfaces are bidirectional:

3-2

 Musical Instrument Digital Interface (MIDI)

They can both send and receive Control Change messages. These control surfaces have
knobs or sliders that can operate automatically. For example, a control surface can have
motorized sliders or knobs. When it receives a Control Change message, the appropriate
control moves to the position in the message.

Use MIDI Control Surfaces with MATLAB and Simulink

The Audio System Toolbox product enables you to use MIDI control surfaces to control
MATLAB programs and Simulink® models by providing the capability to listen to Control
Change messages. The toolbox also provides a limited capability to send Control Change
messages to support synchronizing MIDI controls. This tutorial covers general MIDI
functions. For functions specific to audio plugins in MATLAB, see “MIDI Control for
Audio Plugins” on page 2-2. The Audio System Toolbox general interface to MIDI control
surfaces includes five functions and one block:

• midiid — Interactively identify MIDI control.
• midicontrols — Open group of MIDI controls for reading.
• midiread — Return most recent value of MIDI controls.
• midisync — Send values to MIDI controls for synchronization.
• midicallback — Call function handle when MIDI controls change value.
• MIDI Controls (block) — Output values from controls on MIDI control surface. The

MIDI Controls block combines functionality of the general MIDI functions into one
block for the Simulink environment.

This diagram shows a typical workflow involving general MIDI functions in MATLAB.
For the Simulink environment, follow steps 1 and 2, and then use the MIDI Controls
block for a user-interface guided workflow.

3-3

3 Musical Instrument Digital Interface

1. Connect MIDI Device and Then Start MATLAB

Before starting MATLAB, connect your MIDI control surface to your computer and turn
it on. For connection instructions, see the instructions for your MIDI device. If you start
MATLAB before connecting your device, MATLAB might not recognize your device
when you connect it. To correct the problem, restart MATLAB with the device already
connected.

2. Determine Device Name and Control Numbers

Use the midiid function to determine the device name and control numbers of your
MIDI control surface. After you call midiid, it continues to listen until it receives a
Control Change message. When it receives a Control Change message, it returns the
control number associated with the MIDI controller number that you manipulated, and
optionally returns the device name of your MIDI control surface. The manufacturer
and host operating system determine the device name. See “Control Numbers” on page
3-10 for an explanation of how MATLAB calculates the control number.

To set a default device name, see “Set Default MIDI Device” on page 3-10.

3-4

 Musical Instrument Digital Interface (MIDI)

View Example

Call midiid with two outputs and then move a controller on your MIDI device. midiid
returns the control number specific to the controller you moved and the device name of
the MIDI control surface.

[controlNumber,deviceName] = midiid;

3. Create Listener for Control Change Messages

Use the midicontrols function to create an object that listens for Control Change
messages and caches the most recent values corresponding to specified controllers. When
you create a midicontrols object, you specify a MIDI control surface by its device name
and specific controllers on the surface by their associated control numbers. Because the
midicontrols object cannot query the MIDI control surface for initial values, consider
setting initial values when creating the object.

View Example

Identify two control numbers on your MIDI control surface. Choose initial control
values for the controls you identified. Create a midicontrols object that listens to
Control Change messages that arrive from the controllers you identified on the device
you identified. When you create your midicontrols object, also specify initial control
values. These initial control values work as default values until a Control Change
message is received.

controlNum1 = midiid;

[controlNum2,deviceName] = midiid;

initialControlValues = [0.1,0.9];

midicontrolsObject = midicontrols([controlNum1,controlNum2],initialControlValues,'MIDIDevice',deviceName);

3-5

3 Musical Instrument Digital Interface

4. Get Current Control Values

Use the midiread function to query your midicontrols object for current control
values. midiread returns a matrix with values corresponding to all controllers the
midicontrols object is listening to. Generally, you want to place midiread in an audio
stream loop for continuous updating.

View Example

Place midiread in an audio stream loop to return the current control value of a specified
controller. Use the control value to apply gain to an audio signal.

[controlNumber, deviceName] = midiid;

initialControlValue = 1;

midicontrolsObject = midicontrols(controlNumber,initialControlValue,'MIDIDevice',deviceName);

% Create a dsp.AudioFileReader System object™ with default settings. Create

% an audioDeviceWriter System object and specify the sample rate.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

% In an audio stream loop, read an audio signal frame from the file, apply

% gain specified by the control on your MIDI device, and then write the

% frame to your audio output device. By default, the control value returned

% by midiread is normalized.

while ~isDone(fileReader)

 audioData = step(fileReader);

 controlValue = midiread(midicontrolsObject);

3-6

 Musical Instrument Digital Interface (MIDI)

 gain = controlValue*2;

 audioDataWithGain = audioData*gain;

 play(deviceWriter,audioDataWithGain);

end

% Close the input file and release your output device.

release(fileReader);

release(deviceWriter);

5. Synchronize Bidirectional MIDI Control Surfaces

You can use midisync to send Control Change messages to your MIDI control surface.
If the MIDI control surface is bidirectional, it adjusts the specified controllers. One
important use of midisync is to set the controller positions on your MIDI control surface
to initial values.

View Example

In this example, you initialize a controller on your MIDI control surface to a specified
position. Calling midisync(midicontrolsObject) sends a Control Change message to
your MIDI control surface, using the initial control values specified when you created the
midicontrols object.

[controlNumber,deviceName] = midiid;

initialControlValue = 0.5;

midicontrolsObject = midicontrols(controlNumber,initialControlValue,'MIDIDevice',deviceName);

midisync(midicontrolsObject);

Another important use of midisync is to update your MIDI control surface if control
values are adjusted in an audio stream loop. In this case, you call midisync with both
your midicontrols object and the updated control values.

3-7

3 Musical Instrument Digital Interface

View Example

In this example, you check the normalized output volume in an audio stream loop. If
the volume is above a given threshold, midisync is called and the MIDI controller that
controls the applied gain is reduced.

[controlNumber, deviceName] = midiid;

initialControlValue = 0.5;

midicontrolsObject = midicontrols(controlNumber,initialControlValue);

fileReader = dsp.AudioFileReader('Ambiance-16-44p1-mono-12secs.wav');

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

% Synchronize specified initial value with the MIDI control surface.

midisync(midicontrolsObject);

while ~isDone(fileReader)

 audioData = step(fileReader);

 controlValue = midiread(midicontrolsObject);

 gain = controlValue*2;

 audioDataWithGain = audioData*gain;

 % Check if max output is above a given threshold.

 if max(audioDataWithGain) > 0.7

 % Force new control value to be nonnegative.

 newControlValue = max(0,controlValue-0.5);

 % Send a Control Change message to the MIDI control surface.

 midisync(midicontrolsObject,newControlValue)

3-8

 Musical Instrument Digital Interface (MIDI)

 end

 play(deviceWriter,audioDataWithGain);

end

release(fileReader);

release(deviceWriter);

midisync is also a powerful tool in systems that also involve user interfaces (UIs), so
that when one control is changed, the other control tracks it. Typically, you implement
such tracking by setting callback functions on both the midicontrols object (using
midicallback) and the UI control. The callback for the midicontrols object
sends new values to the UI control. The UI uses midisync to send new values to the
midicontrols object and MIDI control surface. See midisync for examples.

Alternative to Stream Processing

You can use midicallback as an alternative to placing midiread in an audio stream
loop. If a midicontrols object receives a Control Change message, midicallback
automatically calls a specified function handle. The callback function typically calls
midiread to determine the new value of the MIDI controls. You can use this callback
when you want a MIDI controller to trigger an action, such as updating a UI. Using this
approach prevents having a MATLAB program continuously running in the command
window.

3-9

3 Musical Instrument Digital Interface

Set Default MIDI Device

You can set the default MIDI device in the MATLAB environment by using the setpref
function. Use midiid to determine the name of the device, and then use setpref to set
the preference.

[~,deviceName] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

deviceName =

BCF2000

setpref('midi','DefaultDevice',deviceName)

This preference persists across MATLAB sessions, so you only have to set it once, unless
you want to change devices.

If you do not set this preference, MATLAB and the host operating system choose a device
for you. However, such autoselection can cause unpredictable results because many
computers have “virtual” (software) MIDI devices installed that you might not be aware
of. For predictable behavior, set the preference.

Control Numbers

MATLAB defines control numbers as (MIDI channel number) × 1000 + (MIDI controller
number).

• MIDI channel number is the transmission channel that your device uses to send
messages. This value is in the range 1–16.

• MIDI controller number is a number assigned to an individual control on your MIDI
device. This value is in the range 1–127.

Your MIDI device determines the values of MIDI channel number and MIDI controller
number.

See Also

Blocks
MIDI Controls

3-10

 Musical Instrument Digital Interface (MIDI)

Functions
midicallback | midicontrols | midiid | midiread | midisync

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?”
• “Real-Time Audio in MATLAB”
• “MIDI Control for Audio Plugins” on page 2-2

External Websites
• http://www.midi.org

3-11

http://www.midi.org

4

Use the Audio Test Bench

4 Use the Audio Test Bench

Audio Test Bench Walkthrough

Abstract

In this tutorial, explore key functionality of the Audio Test Bench.

Choose Object Under Test

1 To open the Audio Test Bench, at the MATLAB command prompt, enter:

audioTestBench

4-2

 Audio Test Bench Walkthrough

2 In the Object Under Test box, enter audiopluginexample.Strobe and press
Enter. The Audio Test Bench automatically populates itself with the tunable
parameters of the audiopluginexample.Strobe audio plugin.

The mapping between the tunable parameters of your object and the UI widgets
on the Audio Test Bench is determined by audioPluginInterface and
audioPluginParameter in the class definition of your object.

3 In the Object Under Test box, enter
audiopluginexample.DampedVolumeController and press Enter. The Audio
Test Bench automatically populates itself with the tunable parameters of the
audiopluginexample.DampedVolumeController audio plugin.

4-3

4 Use the Audio Test Bench

Run Audio Test Bench

To run the Audio Test Bench for your plugin with default settings, click . Move the
sliders to modify the Gain (dB) and Transition Delay (s) parameters while streaming.

To stop the audio stream loop, click . The MATLAB command line and objects used by
the test bench are now released.

To reset internal states of your audio plugin and return the sliders to their initial
positions, click .

Click to run the audio test bench again.

4-4

 Audio Test Bench Walkthrough

Debug Source Code of Audio Plugin

To pause the Audio Test Bench, click .

To open the source file of your audio plugin, click .

You can inspect the source code of your audio plugin, set breakpoints on it, and modify
the code. Set a breakpoint at line 63, and then click on your Audio Test Bench.

4-5

4 Use the Audio Test Bench

The Audio Test Bench runs your plugin until it reaches the breakpoint. To reach the
breakpoint, move the Transition Delay (s) slider on the UI. To quit debugging, remove
the breakpoint. In the MATLAB editor, click Quit Debugging.

Open Scopes

To open a time scope to visualize the time-domain input and output for your audio
plugin, click . To open a spectrum analyzer to visualize the frequency-domain input and
output, click .

To release objects and stop the audio stream loop, click .

Configure Input to Audio Test Bench

The Input list contains these options:

• Audio File Reader — dsp.AudioFileReader
• Audio Device Reader — audioDeviceReader
• Audio Oscillator — audioOscillator

4-6

 Audio Test Bench Walkthrough

• Wavetable Synthesizer — wavetableSynthesizer
• Chirp Signal — dsp.Chirp
• Colored Noise — dsp.ColoredNoise

1 Select Audio File Reader.
2 Click to open a UI for Audio File Reader configuration.

You can enter any file name included on the MATLAB path. To specify a file that is
not on that MATLAB path, specify the file path completely.

3 In the Name of audio file from which to read box, enter: RockDrums-44p1-
stereo-11secs.mp3

Press Enter, and then exit the Audio File Reader configuration UI. To run the audio
test bench with your new input, click .

To release your output object and stop the audio stream loop, click .

Configure Output from Audio Test Bench

The Output list contains these options:

• Audio Device Writer — audioDeviceWriter
• Audio File Writer — dsp.AudioFileWriter
• Both — audioDeviceWriter and dsp.AudioFileWriter

4-7

4 Use the Audio Test Bench

Choose to output to device and file by selecting Both from the Output menu.

To open a UI for Audio Device Writer and Audio File Writer configuration, click

.

Synchronize Plugin Property with MIDI Control

If you have a MIDI device connected to your computer, you can synchronize plugin
properties with MIDI controls. To open a MIDI configuration UI, click . Synchronize
the Gain and TransitionDelay properties with MIDI controls you choose. Click OK.

4-8

 Audio Test Bench Walkthrough

See configureMIDI for more information.

Play the Audio and Save the Output File

To run your audio plugin, click . Adjust your plugin properties in real time using your
synchronized MIDI controls and UI sliders. Your processed audio file is saved to the
current folder.

Validate and Generate Audio Plugin

To open the validation and generation dialog box, click .

You can validate only, or validate and generate your MATLAB audio plugin code in VST
2 plugin format. The Generate a 32-bit audio plugin check box is available only on
win64 machines. See validateAudioPlugin and generateAudioPlugin for more
information.

See Also

Apps
Audio Test Bench

4-9

4 Use the Audio Test Bench

Functions
generateAudioPlugin | validateAudioPlugin

Classes
audioPlugin

More About
• “Design an Audio Plugin”
• “Audio Plugin Example Gallery” on page 5-2
• “Export a MATLAB Plugin to a DAW”

4-10

5

Audio Plugin Example Gallery

5 Audio Plugin Example Gallery

Audio Plugin Example Gallery

Use these Audio System Toolbox plugin examples to analyze design patterns and practice
your workflow.

Audio Plugin Examples

Name: audiopluginexample.BandPassIIRFilter

Type: Basic plugin

Description: Implements a bandpass filter using a second-order IIR filter. The plugin
parameters are the center frequency and Q-factor.

Inspect Code

edit audiopluginexample.BandPassIIRFilter

Run Plugin

audioTestBench audiopluginexample.BandPassIIRFilter

Generate Plugin

5-2

 Audio Plugin Example Gallery

generateAudioPlugin audiopluginexample.BandPassIIRFilter

Name: audiopluginexample.BassEnhancer

Type: System object plugin

Description: Implements a psychoacoustic bass enhancement algorithm. The plugin
parameters are the upper cutoff frequency of the bandpass filter and the gain applied at
the output of the bandpass filter.

Related Example: Psychoacoustic Bass Enhancement for Band-Limited Signals

Inspect Code

edit audiopluginexample.BassEnhancer

Run Plugin

audioTestBench audiopluginexample.BassEnhancer

Generate Plugin

generateAudioPlugin audiopluginexample.BassEnhancer

5-3

5 Audio Plugin Example Gallery

Name: audiopluginexample.Chorus

Type: Basic plugin

Description: Adds an audio chorus effect. The chorus effect is implemented by
modulating two delay lines.

Inspect Code

edit audiopluginexample.Chorus

Run Plugin

audioTestBench audiopluginexample.Chorus

Generate Plugin

generateAudioPlugin audiopluginexample.Chorus

5-4

 Audio Plugin Example Gallery

Name: audiopluginexample.DampedVolumeController

Type: Basic plugin

Description: Damps the volume control of an audio signal. The plugin has two
parameters: the gain that is applied to the input audio signal, and the transition delay
for gain application in seconds.

Inspect Code

edit audiopluginexample.DampedVolumeController

Run Plugin

audioTestBench audiopluginexample.DampedVolumeController

Generate Plugin

generateAudioPlugin audiopluginexample.DampedVolumeController

5-5

5 Audio Plugin Example Gallery

Name: audiopluginexample.Echo

Type: Basic plugin

Description: Implements an audio echo effect using two delay lines. The plugin user
tunes the delay taps in seconds, the gain of the delay taps, and the output dry/wet mix.

Inspect Code

edit audiopluginexample.Echo

Run Plugin

audioTestBench audiopluginexample.Echo

Generate Plugin

generateAudioPlugin audiopluginexample.Echo

5-6

 Audio Plugin Example Gallery

Name: audiopluginexample.Flanger

Type: Basic plugin

Description: Implements an audio flanging effect using a modulated delay line. The
plugin uses audioOscillator to create the control signal for modulation. The plugin
user tunes the delay tap in seconds, the amplitude and frequency of the delay line
modulation, and the output dry/wet mix.

Inspect Code

edit audiopluginexample.Flanger

Run Plugin

audioTestBench audiopluginexample.Flanger

Generate Plugin

generateAudioPlugin audiopluginexample.Flanger

5-7

5 Audio Plugin Example Gallery

Name: audiopluginexample.HighPassIIRFilter

Type: Basic plugin

Description: Implements a second-order IIR highpass filter with tunable cutoff
frequency. The plugin uses dsp.BiquadFilter to implement filtering.

Related Example: Tunable Filtering and Visualization Using Audio Plug-Ins

Inspect Code

edit audiopluginexample.HighPassIIRFilter

Run Plugin

audioTestBench audiopluginexample.HighPassIIRFilter

Generate Plugin

generateAudioPlugin audiopluginexample.HighPassIIRFilter

5-8

 Audio Plugin Example Gallery

Name: audiopluginexample.LFOFilter

Type: Basic plugin

Description: Implements a low frequency oscillator (LFO) controlled lowpass filter.
The LFO controls the cutoff frequency of the lowpass filter. The plugin user tunes the
type of control signal, and its frequency, amplitude, and DC offset. The plugin user also
tunes the Q factor of the lowpass filter. The plugin uses audioOscillator to generate
common control signals and wavetableSynthesizer to enable the design of arbitrary
control signals.

Inspect Code

edit audiopluginexample.LFOFilter

Run Plugin

audioTestBench audiopluginexample.LFOFilter

Generate Plugin

generateAudioPlugin audiopluginexample.LFOFilter

5-9

5 Audio Plugin Example Gallery

Name: audiopluginexample.LowPassIIRFilter

Type: Basic plugin

Description: Implements a second-order IIR lowpass filter with tunable cutoff
frequency and Q factor. The plugin uses dsp.BiquadFilter to implement filtering.

Related Example: Tunable Filtering and Visualization Using Audio Plug-Ins

Inspect Code

edit audiopluginexample.LowPassIIRFilter

Run Plugin

audioTestBench audiopluginexample.LowPassIIRFilter

Generate Plugin

generateAudioPlugin audiopluginexample.LowPassIIRFilter

5-10

 Audio Plugin Example Gallery

Name: audiopluginexample.LowPassWithVolume

Type: Basic plugin

Description: This plugins combines audiopluginexample.LowPassIIRFilter and
audiopluginexample.DampedVolumeController into a single multi-functional
plugin.

Inspect Code

edit audiopluginexample.LowPassWithVolume

Run Plugin

audioTestBench audiopluginexample.LowPassWithVolume

Generate Plugin

generateAudioPlugin audiopluginexample.LowPassWithVolume

5-11

5 Audio Plugin Example Gallery

Name: audiopluginexample.ParametricEqualizer

Type: System object plugin

Description: Implements a three-band parametric equalizer with tunable center
frequencies, Q factors, and gains. The plugin uses designParamEQ to obtain filter
coefficients and dsp.BiquadFilter to implement filtering.

Related Example: Tunable Filtering and Visualization Using Audio Plug-Ins

Inspect Code

edit audiopluginexample.ParametricEqualizer

Run Plugin

audioTestBench audiopluginexample.ParametricEqualizer

Generate Plugin

generateAudioPlugin audiopluginexample.ParametricEqualizer

5-12

 Audio Plugin Example Gallery

5-13

5 Audio Plugin Example Gallery

Name: audiopluginexample.ParametricEqualizerWithUDP

Type: System object plugin

Description: Extends audiopluginexample.ParametricEqualizer by adding a
UDP sender. Adding a UDP sender enables the generated VST plugin to communicate
with MATLAB. The digital audio workstation and MATLAB can then exchange
information in real time. This plugin uses UDP to send the equalizer filter coefficients
back to MATLAB for visualization purposes. You can alter this plugin to send the input
or output audio instead of, or in addition to, the filter coefficients.

Related Example: Communicating Between a DAW and MATLAB via UDP

Inspect Code

edit audiopluginexample.ParametricEqualizerWithUDP

Run Plugin

audioTestBench audiopluginexample.ParametricEqualizerWithUDP

Generate Plugin

generateAudioPlugin audiopluginexample.ParametricEqualizerWithUDP

5-14

 Audio Plugin Example Gallery

Name: audiopluginexample.PitchShifter

Type: System object plugin

Description: Implements a pitch-shifting algorithm using cross-fading between two
channels with time-varying delays and gains.

Related Example: Delay-based Pitch Shifter

Inspect Code

edit audiopluginexample.PitchShifter

Run Plugin

audioTestBench audiopluginexample.PitchShifter

Generate Plugin

generateAudioPlugin audiopluginexample.PitchShifter

5-15

5 Audio Plugin Example Gallery

Name: audiopluginexample.ShelvingEqualizer

Type: System object plugin

Description: Implements a shelving equalizer with tunable cutoffs, gains, and slopes.
The plugin uses designShelvingEQ to obtain filter coefficients and dsp.BiquadFilter to
implement filtering.

Related Example: Tunable Filtering and Visualization Using Audio Plug-Ins

Inspect Code

edit audiopluginexample.ShelvingEqualizer

Run Plugin

audioTestBench audiopluginexample.ShelvingEqualizer

Generate Plugin

generateAudioPlugin audiopluginexample.ShelvingEqualizer

5-16

 Audio Plugin Example Gallery

Name: audiopluginexample.SpectralSubtractor

Type: Basic plugin

Description: Implements basic or weak iterative spectral subtraction. This plugin
performs frequency-domain processing. Tunable parameters of the plugin include
subtraction type, analysis window type, noise level estimation, analysis time window,
and analysis frame overlap.

Inspect Code

edit audiopluginexample.SpectralSubtractor

Run Plugin

audioTestBench audiopluginexample.SpectralSubtractor

Generate Plugin

generateAudioPlugin audiopluginexample.SpectralSubtractor

5-17

5 Audio Plugin Example Gallery

Name: audiopluginexample.Strobe

Type: Basic plugin

Description: Implements an audio strobing effect. Tunable parameters of the plugin
include the strobe period, the strobe fill, a relative level threshold for implementing the
effect, and the ability to synchronize the strobe period with the audio signal dynamics.
The audioOscillator is used for some strobe fills.

Inspect Code

edit audiopluginexample.Strobe

Run Plugin

audioTestBench audiopluginexample.Strobe

Generate Plugin

generateAudioPlugin audiopluginexample.Strobe

Name: audiopluginexample.UDPSender

Type: Basic plugin

Description: Sends live stereo audio from a digital audio workstation (DAW) to
MATLAB using UDP.

Inspect Code

edit audiopluginexample.UDPSender

Generate Plugin

generateAudioPlugin audiopluginexample.UDPSender

5-18

 Audio Plugin Example Gallery

Name: audiopluginexample.VarSlopeBandpassFilter

Type: System object plugin

Description: Implements a variable slope IIR bandpass filter with tunable cutoff
frequencies and slopes. The plugin uses designVarSlopeFilter to obtain filter
coefficients and dsp.BiquadFilter to implement filtering.

Related Example: Tunable Filtering and Visualization Using Audio Plug-Ins

Inspect Code

edit audiopluginexample.VarSlopeBandpassFilter

Run Plugin

audioTestBench audiopluginexample.VarSlopeBandpassFilter

Generate Plugin

generateAudioPlugin audiopluginexample.VarSlopeBandpassFilter

5-19

5 Audio Plugin Example Gallery

See Also

Apps
Audio Test Bench

Classes
audioPlugin | audioPluginSource

Functions
audioPluginInterface | audioPluginParameter

More About
• “Audio Test Bench Walkthrough” on page 4-2

5-20

6

Equalization

6 Equalization

Equalization

Equalization (EQ) is the process of weighting the frequency spectrum of an audio signal.

You can use equalization to:

• Enhance audio recordings
• Analyze spectral content

Types of equalization include:

• Lowpass and highpass filters — Attenuate high frequency and low frequency content,
respectively.

• Low-shelf and high-shelf equalizers — Boost or cut frequencies equally above or below
a desired cutoff point.

• Parametric equalizers — Selectively boost or cut frequency bands. Also known as
peaking filters.

This tutorial describes how to create equalizers using these Audio System Toolbox design
functions: designParamEQ, designShelvingEQ, and designVarSlopeFilter. The
toolbox also contains the multibandParametricEQ System object, which combines the
filter design functions into a multiband parametric equalizer. For a tutorial focused on
using these functions in MATLAB, see “Parametric Equalizer Design”.

Equalization Design Using Audio System Toolbox

EQ Filter Design

Audio System Toolbox design functions uses the bilinear transform method of digital
filter design to determine your equalizer coefficients. In the bilinear transform method,
you:

1 Choose an analog prototype.
2 Specify filter design parameters.
3 Perform the bilinear transformation.

6-2

 Equalization

Analog Low-Shelf Prototype

Audio System Toolbox uses the high-order parametric equalizer design presented in [1].
In this design method, the analog prototype is taken to be a low-shelf Butterworth filter:

H s
g s

s

g gs s s

s s s
a

r
i

ii

L

() =
+

+
È

Î
Í

˘

˚
˙

+ +

+ +

È

Î
Í
Í

˘

˚
˙
˙=

’b
b

b b

b b

2 2 2

2 2
1

2

2

∑ L = Number of analog SOS sections

∑ N = Analog filter order

∑ =
Ï
Ì
Ó

r

0

1

N even

N odd

∑ =g G N1/

6-3

6 Equalization

∑ = ¥
-

-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

= Ê
ËÁ

ˆ
¯̃
¥

-

-

Ê

Ë

Á
Á

-

b p wW D
B

B

B

N

B

B

G G

G

G G

G

2 2

2

1

2 2

2
1 2 1

tan

ˆ̂

¯

˜
˜

- 1
N

, where Δω is

the desired digital bandwidth

∑ =
-()Ê

Ë
ÁÁ

ˆ

¯
˜̃ =s

i

N
i L

i
sin , , , ...,

2 1

2
1 2

p

For parametric equalizers, the analog prototype is reduced by setting the bandwidth gain
to the square root of the peak gain (GB = sqrt(G)).

After the design parameters are specified, the analog prototype is transformed directly to
the desired digital equalizer by a bandpass bilinear transformation:

s

z z

z

=
- () +

-

- -

-

1 2

1

0
1 2

2

cos w

ω0 is the desired digital center frequency.

This transformation doubles the filter order. Every first-order analog section becomes a
second-order digital section. Every second-order analog section becomes a fourth-order
digital section. Audio System Toolbox always calculates fourth-order digital sections,
which means that returning second-order sections requires the computation of roots, and
is less efficient.

Digital Coefficients

The digital transfer function is implemented as a cascade of second-order and fourth-
order sections.

H z
b b z b z

a z a z

b b z b
r

i i
() =

+ +

+ +

È

Î
Í
Í

˘

˚
˙
˙

+ +- -

- -

-
00 01

1
02

2

01
1

02
2

0 1
1

1

ii i i

i i i ii

z b z b z

a z a z a z a z

2
2

3
3

4
4

1
1

2
2

3
3

4
4

1

- - -

- - - -

+ +

+ + + +

È

Î
Í
Í

˘

˚
˙
˙==

’
1

L

The coefficients are given by performing the bandpass bilinear transformation on the
analog prototype design.

6-4

 Equalization

Second-Order Section Coefficients Fourth-Order Section Coefficients

D

b g D

b D

b g D

a

0

00 0

01 0 0

02 0

01

1

1

2

1

2

= +

= +()
= -

= -()
= -

b

b

w

b

/

cos() /

/

cos(ww

b

0 0

02 01

) /

/

D

a D= -()

D s

b g gs D

b c gs D

b

i i

i i i

i i i

i

= + +

= + +()
= - +()

=

b b

b b

b

2

0
2 2

1 0

2

2 1

2 1

4 1

2 1

/

/

++ -()
= - -()

= - +()

2

4 1

2 1

2
0

2 2

3 0

4
2 2

cos () /

/

w b

b

b b

g D

b c gs D

b g gs

i

i i i

i i //

/

cos () /

cos(

D

a c s D

a D

a

i

i i i

i i

i

1 0

2
2

0
2

3 0

4 1

2 1 2

4

= - +()

= + -()
= -

b

w b

w)) /

/

1

2 14
2

-()

= - +()
s D

a s D

i i

i i i

b

b b

Biquadratic Case

In the biquadratic case, when N = 1, the coefficients reduce to:

D
G

b G D b D b G D

a

B

B B

0

00 0 01 0 0 02 0

01

1

1 2 1

= +

= +() = - = -()
=

W

W W/ , cos() / , /w

-- = -
Ê

Ë
Á

ˆ

¯
˜2 10 0 02 0cos() / , /w D a

G
D

BW

Denormalizing the a00 coefficient, and making substitutions of A =sqrt(G), W
B

@ a yields
the familiar peaking EQ coefficients described in [2].

Orfanidis notes the approximate equivalence of ΩB and a in [1].

By using trigonometric identities,

W D
B

B= Ê
ËÁ

ˆ
¯̃

= () Ê
ËÁ

ˆ
¯̃

tan sin sinh
ln

,
w w
2

2

20

6-5

6 Equalization

where B plays the role of an equivalent octave bandwidth.

Bristow-Johnson obtained an approximate solution for B in [4]:

B BW= ¥
w

w

0

0
sin

Substituting the approximation for B into the ΩB equation yields the definition of a in
[2]:

a w
w

w
= () ¥ ¥

Ê

Ë
Á

ˆ

¯
˜sin sinh

ln

sin
0

0

0

2

2
BW

Lowpass and Highpass Filter Design

Analog Low-Shelf Prototype

To design lowpass and highpass filters, Audio System Toolbox uses a special case of the
filter design for parametric equalizers. In this design, the peak gain, G, is set to 0, and
GB

2 is set to 0.5 (–3 dB cutoff). The cutoff frequency of the lowpass filter corresponds to 1
– ΩB. The cutoff frequency of the highpass filter corresponds to ΩB.

6-6

 Equalization

Digital Coefficients

The table summarizes the results of the bandpass bilinear transformation. The digital
center frequency, ω0, is set to π for lowpass filters and 0 for highpass filters.

Second Order Section Coefficients Fourth Order Section Coefficients

D

b D

b D

b D

a

0

00 0

01 0 0

02 0

01

1
2

1

2

1

2

= + Ê
Ë
Á

ˆ
¯
˜

=

= - ()
=

= -

tan

/

cos /

/

co

p w

w

D

ss /

tan /

w

p
w

0 0

02 01
2

()

= - Ê
Ë
Á

ˆ
¯
˜

Ê

Ë
Á

ˆ

¯
˜

D

a D
D

D s

b D

b

i i

i i

i

= Ê
Ë
Á

ˆ
¯
˜ + Ê

Ë
Á

ˆ
¯
˜ +

=

= - ()

tan tan

/

cos /

2

0

1 0

2
2

2
1

1

4

p w p w

w

D D

DD

b D

b D

b D

a

i

i i

i i

i i

i

2
2

0

3 0 0

4

1

2 1 2

4

1

4

= + ()()
= - ()
=

= -

cos /

cos /

/

cos

w

w

ww p
w

w p w

0

2
2

0
2

1
2

2 1 2
2

() + Ê
ËÁ

ˆ
¯̃

Ê

Ë
Á

ˆ

¯
˜

= + () - Ê
Ë

s D

a

i i

i

tan /

cos tan

D

D
ÁÁ

ˆ
¯̃

Ê

Ë
Á

ˆ

¯
˜

= - () - Ê
Ë
Á

ˆ
¯
˜

Ê

Ë
Á

ˆ

¯
˜

=

/

cos tan /

t

D

a s D

a

i

i i i

i

3 0

4

4 1
2

w p
wD

aan tan /
2

2
2

2
1p w p wD DÊ

ËÁ
ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

+Ê

Ë
Á

ˆ

¯
˜s Di i

Shelving Filter Design

Analog Prototype

Audio System Toolbox implements the shelving filter design presented in [2]. In this
design, the high-shelf and low-shelf analog prototypes are presented separately:

H s A

As A
Q

s

s A
Q

s A

H s A

s

L H() ()=
+ Ê

ËÁ
ˆ
¯̃

+

+ Ê
ËÁ

ˆ
¯̃

+

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=
+2

2

2
1 AA

Q
s A

As A
Q

s

Ê
ËÁ

ˆ
¯̃

+

+ Ê
ËÁ

ˆ
¯̃

+

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃2

1

6-7

6 Equalization

For compactness, the analog filters are presented with variables A and Q. You can
convert A and Q to available Audio System Toolbox design parameters:

A

Q
A

A slope

G
=

= +() -() +

10

1 1 1 1 2

40/

After you specify the design parameters, the analog prototype is transformed to the
desired digital shelving filter by a bilinear transformation with prewarping:

s

z

z

=
-
+

Ê
Ë
Á

ˆ
¯
˜ ¥

Ê

Ë
Á

ˆ

¯
˜

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

1

1

1

2

0
tan

w

Digital Coefficients

The table summarizes the results of the bilinear transformation with prewarping.

Low-Shelf
b A A A A

b A A A

b A A

0 0

1 0

2

1 1 2

2 1 1

= +() - -() +()
= -() - +()()

=

cos()

cos()

w a

w

++() - -() -()
= +() + -() +

= - -(

1 1 2

1 1 2

2 1

0

0 0

1

A A

a A A A

a A

cos()

cos()

w a

w a

)) + +()()

= +() + -() -

A

a A A A

1

1 1 2

0

2 0

cos()

cos()

w

w a

High-Shelf
b A A A A

b A A A

b A

0 0

1 0

2

1 1 2

2 1 1

= +() + -() +()
= - -() + +()()

=

cos()

cos()

w a

w

AA A A

a A A A

a A

+() + -() -()
= +() - -() +

= -(

1 1 2

1 1 2

2 1

0

0 0

1

cos()

cos()

w a

w a

)) + +()()

= +() - -() -

A

a A A A

1

1 1 2

0

2 0

cos()

cos()

w

w a

6-8

 Equalization

Intermediate
Variables a

w

w p

=
()

+Ê
Ë
Á

ˆ
¯
˜ -
Ê

Ë
Á

ˆ

¯
˜ +

=

sin
0

0

2

1 1
1 2

2

A
A slope

A

Cutoff Frequency

Fss

References

[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of
the Audio Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

[2] Bristow-Johnson, Robert. "Cookbook Formulae for Audio EQ Biquad Filter
Coefficients." Accessed March 02, 2016. http://www.musicdsp.org/files/Audio-EQ-
Cookbook.txt.

[3] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 2010.

[4] Bristow-Johnson, Robert. “The Equivalence of Various Methods of Computing Biquad
Coefficients for Audio Parametric Equalizers.” Presented at the 97th Convention
of the AES, San Francisco, November 1994, AES Preprint 3906.

See Also

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

System Objects
multibandParametricEQ

More About
• “Parametric Equalizer Design”

6-9

7

Deployment

• “Functions and System Objects Supported for MATLAB Coder” on page 7-2
• “Functions and System Objects Supported for MATLAB Compiler” on page 7-4
• “Desktop Real-Time Audio Acceleration with MATLAB Coder” on page 7-6

7 Deployment

Functions and System Objects Supported for MATLAB Coder

If you have a MATLAB Coder license, you can generate C and C++ code from MATLAB
code that contains Audio System Toolbox functions and System objects. For more
information about C and C++ code generation from MATLAB code, see the MATLAB
Coder documentation. For more information about generating code from System objects,
see “System Objects in MATLAB Code Generation”.

The following Audio System Toolbox functions and System objects are supported for C
and C++ code generation from MATLAB code.

Name Remarks and Limitations

Audio I/O and Waveform Generation
audioDeviceReader “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
audioDeviceWriter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
wavetableSynthesizer “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
audioOscillator “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
Audio Processing Algorithm Design
designVarSlopeFilter Supports MATLAB Function block: Yes
designParamEQ Supports MATLAB Function block: Yes
designShelvingEQ Supports MATLAB Function block: Yes
integratedLoudness Supports MATLAB Function block: Yes
crossoverFilter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
compressor “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes

7-2

 Functions and System Objects Supported for MATLAB Coder

Name Remarks and Limitations

expander “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
noiseGate “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
limiter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
multibandParametricEQ “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
octaveFilter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
weightingFilter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
loudnessMeter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: No

Dynamic Memory Allocation must not be turned
off.

reverberator “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
Audio Plugins
audioPluginInterface Supports MATLAB Function block: Yes
audioPluginParameter Supports MATLAB Function block: Yes
audioPlugin Supports MATLAB Function block: Yes
audioPluginSource Supports MATLAB Function block: Yes

7-3

7 Deployment

Functions and System Objects Supported for MATLAB Compiler

If you have a MATLAB Compiler license, you can generate standalone applications that
contain Audio System Toolbox functions, System objects, and classes.

The following Audio System Toolbox functions, System objects, and classes are supported
for generating standalone applications from MATLAB code.

Name Remarks and Limitations

Audio I/O and Waveform Generation
audioDeviceReader
audioDeviceWriter
wavetableSynthesizer
audioOscillator
Audio Processing Algorithm Design
designVarSlopeFilter
designParamEQ
designShelvingEQ
integratedLoudness
crossoverFilter
compressor
expander
noiseGate
limiter
multibandParametricEQ
octaveFilter
weightingFilter
loudnessMeter
reverberator
Simulation, Tuning, and Visualization
midiid

7-4

 Functions and System Objects Supported for MATLAB Compiler

Name Remarks and Limitations

midicontrols
midiread
midisync
midicallback
getMIDIConnections
configureMIDI User interface not supported.
disconnectMIDI
Audio Plugins
audioPluginInterface
audioPluginParameter
audioPlugin
audioPluginSource

7-5

7 Deployment

Desktop Real-Time Audio Acceleration with MATLAB Coder

This example shows how to accelerate a real-time audio application using C code
generation with MATLAB® Coder™. You must have the MATLAB Coder™ software
installed to run this example.

Introduction

Replacing parts of your MATLAB code with an automatically generated MATLAB
executable (MEX-function) can speed up simulation. Using MATLAB Coder, you can
generate readable and portable C code and compile it into a MEX-function that replaces
the equivalent section of your MATLAB algorithm.

This example showcases code generation using an audio notch filtering application.

Notch Filtering

A notch filter is used to eliminate a specific frequency from a signal. Typical filter design
parameters for notch filters are the notch center frequency and the 3 dB bandwidth. The
center frequency is the frequency at which the filter has a linear gain of zero. The 3 dB
bandwidth measures the frequency width of the notch of the filter computed at the half-
power or 3 dB attenuation point.

The helper function used in this example is helperAudioToneRemoval. The
function reads an audio signal corrupted by a 250 Hz sinusoidal tone from a file.
helperAudioToneRemoval uses a notch filter to remove the interfering tone and writes
the filtered signal to a file.

You can visualize the corrupted audio signal using a spectrum analyzer.

scope = dsp.SpectrumAnalyzer('SampleRate',44.1e3,...

 'RBWSource','Property','RBW',5,...

 'PlotAsTwoSidedSpectrum',false,...

 'SpectralAverages',10,...

 'FrequencySpan','Start and stop frequencies',...

 'StartFrequency',20,...

 'StopFrequency',1000,...

 'Title','Audio signal corrupted by 250 Hz tone');

reader = dsp.AudioFileReader('guitar_plus_tone.ogg');

while ~isDone(reader)

 audio = reader();

 scope(audio(:,1));

7-6

 Desktop Real-Time Audio Acceleration with MATLAB Coder

end

C Code Generation Speedup

Measure the time it takes to read the audio file, filter out the interfering tone, and write
the filtered output using MATLAB code. Because helperAudioToneRemoval writes an
audio file output, you must have write permission in the current directory. To ensure
write access, change directory to your system's temporary folder.

mydir = pwd; addpath(mydir); cd(tempdir);

tic;

helperAudioToneRemoval;

t1 = toc;

fprintf('MATLAB Simulation Time: %d\n',t1);

7-7

7 Deployment

MATLAB Simulation Time: 5.570825e+00

Next, generate a MEX-function from helperAudioToneRemoval using the MATLAB
Coder function, codegen.

codegen helperAudioToneRemoval

Measure the time it takes to execute the MEX-function and calculate the speedup gain
with a compiled function.

tic;

helperAudioToneRemoval_mex

t2 = toc;

fprintf('Code Generation Simulation Time: %d\n',t2);

fprintf('Speedup factor: %6.2f\n',t1/t2);

cd(mydir);

Code Generation Simulation Time: 5.374433e+00

Speedup factor: 1.04

Related Examples
• “Generate Standalone Executable for Parametric Audio Equalizer”
• “Deploy Audio Applications with MATLAB Compiler”

More About
• “Functions and System Objects Supported for MATLAB Coder” on page 7-2
• “Functions and System Objects Supported for MATLAB Compiler” on page 7-4

7-8

8

Audio I/O User Guide

8 Audio I/O User Guide

Run Audio I/O Features Outside MATLAB and Simulink

You can deploy these audio input and output features outside the MATLAB and
Simulink environments:

System Objects

• audioDeviceReader
• audioDeviceWriter
• dsp.AudioFileReader
• dsp.AudioFileWriter

Blocks

• Audio Device Reader

• Audio Device Writer

• From Multimedia File

• To Multimedia File

The generated code for the audio I/O features relies on prebuilt dynamic library files
included with MATLAB. You must account for these extra files when you run audio
I/O features outside the MATLAB and Simulink environments. To run a standalone
executable generated from a model or code containing the audio I/O features, set your
system environment using commands specific to your platform.

Platform Command

Mac setenv DYLD_LIBRARY_PATH

"${DYLD_LIBRARY_PATH}:

$MATLABROOT/bin/maci64" (csh/

tcsh)

export DYLD_LIBRARY_PATH=

$LD_LIBRARY_PATH:$MATLABROOT/bin/

maci64 (Bash)

Linux setenv LD_LIBRARY_PATH

${LD_LIBRARY_PATH}:$MATLABROOT/

bin/glnxa64 (csh/tcsh)

8-2

 Run Audio I/O Features Outside MATLAB and Simulink

Platform Command

export LD_LIBRARY_PATH=

$LD_LIBRARY_PATH:$MATLABROOT/bin/

glnxa64 (Bash)

Windows set PATH=%PATH%;%MATLABROOT%\bin

\win64

The path in these commands is valid only on systems that have MATLAB installed. If
you run the standalone app on a machine with only MCR, and no MATLAB installed,
replace $MATLABROOT/bin/... with the path to the MCR.

To run the code generated from the above System objects and blocks on a machine does
not have MCR or MATLAB installed, use the packNGo function. The packNGo function
packages all relevant files in a compressed zip file so that you can relocate, unpack, and
rebuild your project in another development environment with no MATLAB installed.

You can use the packNGo function at the command line or the Package option in
the MATLAB Coder app. The files are packaged in a compressed file that you can
relocate and unpack using a standard zip utility. For more details on how to pack
the code generated from MATLAB code, see Package Code for Other Development
Environments. For more details on how to pack the code generated from Simulink blocks,
see the packNGo function.

More About
• “MATLAB Programming for Code Generation”

8-3

http://www-jobarchive/Bdoc16b/latest_pass/matlab/help/coder/ug/package-code-for-other-development-environments.html
http://www-jobarchive/Bdoc16b/latest_pass/matlab/help/coder/ug/package-code-for-other-development-environments.html
http://www-jobarchive/Bdoc16b/latest_pass/matlab/help/rtw/ref/packngo.html

9

Block Example Repository

9 Block Example Repository

Decrease Underrun

Examine the Audio Device Writer block in a Simulink® model, determine underrun, and
decrease underrun.

1. Run the model. The Audio Device Writer sends an audio stream to your computer's
default audio output device. The Audio Device Writer block sends the number of samples
underrun to your Time Scope.

9-2

 Decrease Underrun

2. Uncomment the Artificial Load block. This block performs computations that slow the
simulation.

3. Run the model. If your device writer is dropping samples:

a. Stop the simulation.

b. Open the From Multimedia File block.

9-3

9 Block Example Repository

c. Set the Samples per frame parameter to 1024.

d. Close the block and run the simulation.

If your model continues to drop samples, increase the frame size again. The increased
frame size increases the buffer size used by the sound card. A larger buffer size increases
the possibility of underruns at the cost of higher audio latency.

See Also
From Multimedia File | Time Scope

9-4

10

Block Example Repository

• “Suppress Loud Sounds” on page 10-2
• “Attenuate Low-Level Noise” on page 10-5
• “Suppress Volume of Loud Sounds” on page 10-8
• “Gate Background Noise” on page 10-11
• “Output Values from MIDI Control Surface” on page 10-14
• “Apply Frequency Weighting” on page 10-16
• “Compare Loudness Before and After Audio Processing” on page 10-18
• “Two-Band Crossover Filtering for a Stereo Speaker System” on page 10-20
• “Mimic Acoustic Environments” on page 10-22
• “Perform Parametric Equalization” on page 10-24
• “Perform Octave Filtering” on page 10-26
• “Read from Microphone and Write to Speaker” on page 10-28
• “Channel Mapping” on page 10-31

10 Block Example Repository

Suppress Loud Sounds

Use the Compressor block to suppress loud sounds and visualize the applied compression
gain.

1. Open the Time Scope and Compressor blocks.

2. Run the model. To switch between listening to the compressed signal and the original
signal, double-click the Manual Switch block.

3. Observe how the applied gain depends on compression parameters and input signal
dynamics by tuning the Compressor block parameters and viewing the results on the
Time Scope.

10-2

 Suppress Loud Sounds

See Also
Audio Device Writer | Compressor | From Multimedia File | Matrix
Concatenate | Time Scope

10-3

10 Block Example Repository

More About
• “Dynamic Range Control” on page 1-2

10-4

 Attenuate Low-Level Noise

Attenuate Low-Level Noise

Use the Expander block to attenuate low-level noise and visualize the applied dynamic
range control gain.

1. Open the Time Scope and Expander blocks.

2. Run the model. To switch between listening to the expanded signal and the original
signal, double-click the Manual Switch block.

3. Observe how the applied gain depends on expansion parameters and input signal
dyanmics by tuning the Expander block parameters and viewing the results on the Time
Scope.

10-5

10 Block Example Repository

See Also
Audio Device Writer | Colored Noise | Expander | From Multimedia File |
Matrix Concatenate | Time Scope

10-6

 Attenuate Low-Level Noise

More About
• “Dynamic Range Control” on page 1-2

10-7

10 Block Example Repository

Suppress Volume of Loud Sounds

Suppress the volume of loud sounds and visualize the applied dynamic range control
gain.

1. Open the Time Scope and Limiter blocks.

2. Run the model. To switch between listening to the gated signal and the original signal,
double-click the Manual Switch block.

3. Observe how the applied gain depends on dynamic range limiting parameters and
input signal dynamics by tuning Limiter block parameters and viewing the results on the
Time Scope.

10-8

 Suppress Volume of Loud Sounds

See Also
Audio Device Writer | From Multimedia File | Limiter | Matrix
Concatenate | Time Scope

10-9

10 Block Example Repository

More About
• “Dynamic Range Control” on page 1-2

10-10

 Gate Background Noise

Gate Background Noise

Apply dynamic range gating to remove low-level noise from an audio file.

1. Open the Time Scope and Noise Gate blocks.

2. Run the model. To switch between listening to the gated signal and the original signal,
double-click the Manual Switch block.

3. Observe how the applied gain depends on noise gate parameters and input signal
dynamics by tuning Noise Gate block parameters and viewing the results on the Time
Scope.

10-11

10 Block Example Repository

See Also
Audio Device Writer | From Multimedia File | Matrix Concatenate | Noise
Gate | Random Source | Time Scope

10-12

 Gate Background Noise

More About
• “Dynamic Range Control” on page 1-2

10-13

10 Block Example Repository

Output Values from MIDI Control Surface

The example shows how to set the MIDI Controls block parameters to output control
values from your MIDI device.

1. Connect a MIDI device to your computer and then open the model.

2. Run the model with default settings. Move any controller on your default MIDI device
to update the Display block.

3. Stop the simulation.

4. At the MATLAB™ command line, use midiid to determine the name of your MIDI
device and two control numbers associated with your device.

5. In the MIDI Control block dialog box, set MIDI device to Specify other and enter
the name of your MIDI device.

6. Set MIDI controls to Respond to specified controls and enter the control
numbers determined using midiid.

7. Specify initial values as a vector the same size as MIDI control numbers. The initial
values you specify are quantized according to the MIDI protocol and your particular
MIDI surface.

The dialog box shows sample values for a 'BCF2000' MIDI device with control numbers
1081 and 1083.

10-14

 Output Values from MIDI Control Surface

8. Click OK, and then run the model. Verify that the Display block shows initial values
and updates when you move the specified controls.

See Also
Audio Device Writer | From Multimedia File | Matrix Concatenate | MIDI
Controls | Time Scope

More About
• “Musical Instrument Digital Interface (MIDI)” on page 3-2

10-15

10 Block Example Repository

Apply Frequency Weighting

Examine the Weighting Filter block in a Simulink® model and tune parameters.

1. Open the Spectrum Analyzer block.

2. Run the model. Switch between listening to the frequency-weighted signal and the
original signal by double-clicking the Manual Switch block.

3. Stop the model. Open the Weighting Filter block and choose a different weighting
method. Observe the difference in simulation.

10-16

 Apply Frequency Weighting

See Also
Audio Device Writer | From Multimedia File | Spectrum Analyzer |
Weighting Filter

10-17

10 Block Example Repository

Compare Loudness Before and After Audio Processing

Measure loudness before and after compression of a streaming audio signal in
Simulink®.

1. Open the Time Scope and Compressor blocks.

2. Run the model. To switch between listening to the compressed signal and the original
signal, double-click the switch.

3. Observe the effect of compression on loudness by tuning the Compressor block
parameters and viewing the momentary loudness on the Time Scope block.

10-18

 Compare Loudness Before and After Audio Processing

4. Stop the model. For both Loudness blocks, replace momentary loudness with short-
term loudness as input to the Matrix Concatenate block. Run the model again and
observe the effect of compression on short-term loudness.

See Also
Audio Device Writer | Compressor | From Multimedia File | Loudness
Meter | Matrix Concatenate | Time Scope

10-19

10 Block Example Repository

Two-Band Crossover Filtering for a Stereo Speaker System

Divide a mono signal into a stereo signal with distinct frequency bands. To hear the full
effect of this simulation, use a stereo speaker system, such as headphones.

1. Open the Spectrum Analyzer and Crossover Filter blocks.

2. Run the model. To switch between listening to the filtered and original signal, double-
click the Manual Switch block.

3. Tune the crossover frequency on the Crossover Filter block to listen to the effect on
your speakers and view the effect on the Spectrum Analyzer block.

10-20

 Two-Band Crossover Filtering for a Stereo Speaker System

See Also
Audio Device Writer | Crossover Filter | From Multimedia File | Matrix
Concatenate | Spectrum Analyzer

10-21

10 Block Example Repository

Mimic Acoustic Environments

Examine the Reverberator block in a Simulink® model and tune parameters. The
reverberation parameters in this model mimic a large room with hard walls, such as a
gymnasium.

1. Run the simulation. Listen to the audio signal with and without reverberation by
double-clicking the Manual Switch block.

2. Stop the simulation.

3. Disconnect the From Multimedia File block so that you can run the model without
recording.

4. Open the Reverberator block.

5. Run the simulation and tune the parameters of the Reverberator block.

6. After you are satisfied with the reverberation environment, stop the simulation.

10-22

 Mimic Acoustic Environments

7. Reconnect the To Multimedia File block. Rename the output file with a description to
match your reverberation environment, and rerun the model.

See Also
Audio Device Writer | From Multimedia File | Matrix Concatenate |
Reverberator | To Multimedia File

10-23

10 Block Example Repository

Perform Parametric Equalization

Examine the Parametric EQ Filter block in a Simulink® model and tune parameters.

1. Open the Spectrum Analyzer and Parametric EQ Filter blocks.

2. In the Parametric EQ Filter block, click View Filter Response. Modify parameters of
the parametric equalizer and see the mangitude response plot update automatically.

3. Run the model. Tune parameters on the Parametric EQ Filter to listen to the effect on
your audio device and see the effect on the Spectrum Analyzer display. Double-click the
Manual Switch block to toggle between the original and equalized signal as output.

10-24

 Perform Parametric Equalization

See Also
Audio Device Writer | From Multimedia File | Matrix Concatenate |
Parametric EQ Filter | Spectrum Analyzer

10-25

10 Block Example Repository

Perform Octave Filtering

Examine the Octave Filter block in a Simulink® model and tune parameters.

1. Open the Octave Filter block and click Visualize filter response. Tune parameters
on the Octave Filter dialog. The filter response visualization updates automatically. If
you break compliance with the ANSI S1.11-2004 standard, the filter mask is drawn in
red.

2. Run the model. Open the Spectrum Analyzer block. Tune parameters on the Octave
Filter block to listen to the effect on your audio device and see the effect on the Spectrum
Analyzer display. Switch between listening to the filtered and unfiltered audio by double-
clicking the Manual Switch block.

10-26

 Perform Octave Filtering

See Also
Audio Device Writer | From Multimedia File | Octave Filter | Spectrum
Analyzer

10-27

10 Block Example Repository

Read from Microphone and Write to Speaker

Examine the Audio Device Reader block in a Simulink® model, modify parameters, and
explore overrun.

1. Run the model. The Audio Device Reader records an audio stream from your
computer's default audio input device. The Reverberator block processes your input
audio. The Audio Device Writer block sends the processed audio to your default audio
output device.

10-28

 Read from Microphone and Write to Speaker

2. Stop the model. Open the Audio Device Reader block and lower the Samples per
frame parameter. Open the Time Scope block to view overrun.

10-29

10 Block Example Repository

3. Run the model again. Lowering the Samples per frame decreases the buffer size
of your Audio Device Reader block. A smaller buffer size decreases audio latency while
increasing the likelihood of overruns.

See Also
Audio Device Reader | Audio Device Writer | Reverberator | Time Scope

More About
• “Audio I/O: Buffering, Latency, and Throughput”

10-30

 Channel Mapping

Channel Mapping

Examine the Audio Device Writer block in a Simulink® model and specify a nondefault
channel mapping.

1. Run the simulation. The Audio Device Writer sends a stereo audio stream to your
computer's default audio output device. If you are using a stereo audio output device,
such as headphones, you can hear a tone from one speaker and noise from the other
speaker.

2. Specify a nondefault channel mapping:

a. Stop the simulation.

b. Open the Audio Device Writer block to modify parameters.

c. On the Advanced tab, clear the Use default mapping between columns of input
of this block and sound card's output channels parameter.

d. Specify the Device output channels in reverse order: [2,1]. If you are using
a stereo output device, such as headphones, you hear that the noise and tone have
switched speakers.

See Also
Audio Device Writer | Matrix Concatenate | Random Source | Sine Wave

10-31

10 Block Example Repository

More About
• “Audio I/O: Buffering, Latency, and Throughput”

10-32

11

Communicate Between a DAW and
MATLAB using UDP

11 Communicate Between a DAW and MATLAB using UDP

Communicate Between a DAW and MATLAB Using UDP

Communicate between a digital audio workstation (DAW) and MATLAB® using the user
datagram protocol (UDP). This example describes UDP and how you can implement it
using Audio System Toolbox®.

User Datagram Protocol (UDP)

UDP is a core member of the Internet protocol suite. It is a simple connectionless
transmission that does not employ any methods for error checking. Because it does not
check for errors, UDP is a fast but unreliable alternative to the transmission control
protocol (TCP) and stream control transmission protocol (SCTP). UDP is widely used in
applications that are willing to trade fidelity for high-speed transmission, such as video
conferencing and real-time computer games. If you use UDP for communication within
a single machine, packets are less likely to drop. The tutorials outlined here work best
when executed on a single machine.

UDP and MATLAB

These System objects enable you to use UDP with MATLAB:

• dsp.UDPReceiver - Receive UDP packets from network
• dsp.UDPSender - Send UDP packets to network

To communicate between a DAW and MATLAB using UDP, place a UDP sender in the
plugin used in the DAW, and run a corresponding UDP receiver in MATLAB.

The dsp.UDPSender and dsp.UDPReceiver System objects use prebuilt library files
that are included with MATLAB.

11-2

 Communicate Between a DAW and MATLAB Using UDP

Example Plugins

These Audio System Toolbox example plugins use UDP:

• audiopluginexample.UDPSender - Send an audio signal from a DAW to the network.
If you generate this plugin and deploy it to a DAW, the plugin sends frames of a
stereo signal to the network. The frame size is determined by the DAW. You can
modify the example plugin to send any information you want to analyze in MATLAB.

• audiopluginexample.ParametricEqualizerWithUDP - Send a plugin's filter coefficients
from a DAW to the network. If you generate this plugin and run it in a DAW, the
plugin sends the coefficients of the parametric equalizer you tune in the DAW to the
network. The HelperUDPPluginVisualizer function contains a UDP receiver that
receives the datagram, and uses it to plot the magnitude response of the filter you are
tuning in a DAW.

Send Audio from DAW to MATLAB

Step 1: Generate a VST Plugin

To generate a VST plugin from audiopluginexample.UDPSender, use the
generateAudioPlugin function. It is a best practice to move to a directory that can store
the generated plugin before executing this command:

generateAudioPlugin audiopluginexample.UDPSender

The generated plugin is saved to your current folder and named UDPSender.

Step 2: Open DAW with Appropriate Environment Variables Set

To run the UDP sender outside of MATLAB, you must open the DAW from a command
terminal with the appropriate environment variables set. Setting environment variables
enables the deployed UDP sender to use the necessary library files in MATLAB. To learn
how to set the environment variables, see the tutorial specific to your system:

• Windows®
• Mac®

After you set the environment variables, open your DAW from the same command
terminal, such as in this example terminal from a Windows system.

11-3

11 Communicate Between a DAW and MATLAB using UDP

Step 3: Receive and Process an Audio Signal

a. In the DAW, open the generated UDPSender file.

b. In MATLAB, run this script:

% The UDPSender plugin sends frames of audio to the network at whatever

% frame size the DAW uses. Specify a reasonable upper bound as the maximum

% message length supported by the dsp.UDPReciever, 8188.

receiver = dsp.UDPReceiver(...

 'MessageDataType','double',... % Data type used in DAW

 'LocalIPPort',20000,... % Remote IP port of UDP sender

 'MaximumMessageLength',8188,...

 'ReceiveBufferSize',8188*8); % (Max message length * data type size)

scope = dsp.SpectrumAnalyzer(...

 'SampleRate',44100,... % Sample rate of audio in DAW

 'PlotAsTwoSidedSpectrum',false,...

 'FrequencyScale','log',...

 'YLimits',[-70 10]);

tic

while toc < 10

 audioIn = receiver();

 if ~isempty(audioIn)

 % The UDPSender plugin converts the audio it sends from two

 % channels to one channel by stacking the channels. Convert the

 % signal back to stereo.

 x = numel(audioIn)/2;

 left = audioIn(1:x);

 right = audioIn(x+1:end);

 % Convert the stereo signal to a mono for visualization.

 mono = 0.5*sum([left,right],2);

11-4

 Communicate Between a DAW and MATLAB Using UDP

 scope(mono)

 end

end

release(scope)

release(receiver)

The audio signal is displayed on the dsp.SpectrumAnalyzer for analysis.

Send Coefficients from DAW to MATLAB

1. Follow steps 1-2 from Send Audio from DAW to
MATLAB, replacing audiopluginexample.UDPSender with
audiopluginexample.ParametricEqualizerWithUDP.

11-5

11 Communicate Between a DAW and MATLAB using UDP

2. Receive and process filter coefficients

a. In the DAW, open the generated ParameterEqualizerWithUDP file. The plugin
display name is ParametricEQ.

b. In MATLAB, run this command: HelperUDPPluginVisualizer

The HelperUDPPluginVisualizer function uses a dsp.UDPReceiver to receive the
filter coefficients and then displays the magnitude response for 60 seconds. You can
modify the code to extend or reduce the amount of time. The plotted magnitude response
corresponds to the parametric equalizer plugin you tune in the DAW.

See Also

System Objects
dsp.UDPSender | dsp.UDPReceiver

Functions
generateAudioPlugin

More About
• “Audio Plugin Example Gallery” on page 5-2
• “Export a MATLAB Plugin to a DAW”

11-6

12

Real-Time Parameter Tuning

12 Real-Time Parameter Tuning

Real-Time Parameter Tuning

Parameter tuning is the ability to modify parameters of your audio system in real
time while streaming an audio signal. In algorithm development, tunable parameters
enable you to quickly prototype and test various parameter configurations. In deployed
applications, tunable parameters enable users to fine-tune general algorithms for specific
purposes, and to react to changing dynamics.

Audio System Toolbox is optimized for parameter tuning in a real-time audio stream. The
System objects, blocks, and audio plugins provide various tunable parameters, including
sample rate and frame size, making them robust tools when used in an audio stream
loop.

To optimize your use of Audio System Toolbox, package your audio processing algorithm
as an audio plugin. Packaging your audio algorithm as an audio plugin enables you to
prototype your algorithm using the Audio Test Bench. The Audio Test Bench creates a
user interface (UI) for tunable parameters, enables you to specify input and output from
your audio stream loop, and provides access to analysis tools such as the time scope and
spectrum analyzer. Packaging your code as an audio plugin also enables you to quickly
synchronize your parameters with MIDI controls. For more information, see “Design an
Audio Plugin” and “Audio Test Bench Walkthrough” on page 4-2.

Other methods to create UIs in MATLAB include:

• App Designer — Development environment for a large set of interactive controls
with support for 2-D plots. See “Create Simple App Using App Designer” for more
information.

• GUIDE — Drag-and-drop environment for laying out user interfaces with support for
any type of plot. See “Create a Simple App Using GUIDE” for more information.

• Programmatic workflow — Use MATLAB functions to define your app element-by-
element. This tutorial uses a programmatic approach.

See “Ways to Build Apps” for a more detailed list of the costs and benefits of the different
approaches to parameter tuning.

Programmatic Parameter Tuning

In this tutorial, you tune the value of a parameter in an audio stream loop.

This tutorial contains three files:

12-2

 Real-Time Parameter Tuning

1 parameterRef — Class definition that contains tunable parameters
2 parameterTuningUI — Function that creates a UI for parameter tuning
3 AudioProcessingScript — Script for audio processing

Inspect the diagram for an overview of how real-time parameter tuning is implemented.
To implement real-time parameter tuning, walk through the example for explanations
and step-by-step instructions.

1. Create Class with Tunable Parameters

To tune a parameter in an audio stream loop using a UI, you need to associate the
parameter with the position of a UI widget. To associate a parameter with a UI widget,
make the parameter an object of a handle class. Objects of handle classes are passed by
reference, meaning that you can modify the value of the object in one place and use the
updated value in another. For example, you can modify the value of the object using a
slider on a figure and use the updated value in an audio processing loop.

Save the parameterRef class definition file to your current folder.

classdef parameterRef < handle

 properties

 name

12-3

12 Real-Time Parameter Tuning

 value

 end

end

Objects of the parameterRef class have a name and value. The name is for display
purposes on the UI. You use the value for tuning.

2. Create Function to Generate a UI

The parameterTuningUI function accepts your parameter, specified as an object
handle, and the desired range. The function creates a figure with a slider associated with
your parameter. The nested function, slidercb, is called whenever the slider position
changes. The slider callback function maps the position of the slider to the parameter
range, updates the value of the parameter, and updates the text on the UI. You can
easily modify this function to tune multiple parameters in the same UI.

Save parameterTuningUI to Current Folder

Open parameterTuningUI and save ti to your current folder.

function parameterTuningUI(parameter,parameterMin,parameterMax)

12-4

 Real-Time Parameter Tuning

% Map slider position to specified range

rangeVector = linspace(parameterMin,parameterMax,1001);

[~,idx] = min(abs(rangeVector-parameter.value));

initialSliderPosition = idx/1000;

% Main figure

hMainFigure = figure(...

 'Name', 'Parameter Tuning', ...

 'MenuBar','none', ...

 'Toolbar','none', ...

 'HandleVisibility','callback', ...

 'NumberTitle','off', ...

 'IntegerHandle','off');

 % Slider to tune parameter

 uicontrol('Parent',hMainFigure, ...

 'Style','slider', ...

 'Position',[80,205,400,23], ...

 'Value',initialSliderPosition, ...

 'Callback',@slidercb);

 % Label for slider

 uicontrol('Parent',hMainFigure, ...

 'Style','text', ...

 'Position',[10,200,70,23], ...

 'String',parameter.name);

 % Display current parameter value

 paramValueDisplay = uicontrol('Parent',hMainFigure, ...

 'Style','text', ...

 'Position', [490,205,50,23], ...

 'BackgroundColor','white', ...

 'String',parameter.value);

 % Update parameter value if slider value changed

 function slidercb(slider,~)

 val = get(slider,'Value');

 rangeVectorIndex = round(val*1000)+1;

 parameter.value = rangeVector(rangeVectorIndex);

 set(paramValueDisplay,'String',num2str(parameter.value));

 end

end

12-5

12 Real-Time Parameter Tuning

3. Create Script for Audio Processing

The audio processing script:

A Creates input and output objects for an audio stream loop.
B Creates an object of the handle class, parameterRef, that stores your parameter

name and value.
C Calls the tuning UI function, parameterTuningUI, with your parameter and the

parameter range.
D Processes the audio in a loop. You can tune your parameter, x, in the audio stream

loop.

Run AudioProcessingScript

Open AudioProcessingScript, save it to your current folder, and then run the file.

%% A. Create input and output objects

fileReader = dsp.AudioFileReader(...

 'speech_dft.mp3', ...

 'SamplesPerFrame',64, ...

 'PlayCount',3);

deviceWriter = audioDeviceWriter(...

 'SampleRate', fileReader.SampleRate);

%% B. Create an object of a handle class

x = parameterRef;

x.name = 'gain';

x.value = 2.5;

%% C. Open the UI function for your parameter

parameterTuningUI(x,0,5);

%% D. Process audio in a loop

while ~isDone(fileReader)

 audioIn = fileReader();

 drawnow limitrate

 audioOut = audioIn.*x.value;

 deviceWriter(audioOut);

end

% Release input and output objects

12-6

 Real-Time Parameter Tuning

release(fileReader);

release(deviceWriter);

While the script runs, move the position of the slider to update your parameter value and
hear the result.

See Also
Audio Test Bench

More About
• “Real-Time Audio in MATLAB”
• “Design an Audio Plugin”
• “Audio Test Bench Walkthrough” on page 4-2
• “Create Simple App Using App Designer”
• “Create a Simple App Using GUIDE”
• “Ways to Build Apps”

12-7

13

Sample Audio Files

13 Sample Audio Files

Sample Audio Files

Use these audio files as input to your audio system.

See Also

Functions
audioread

System Objects
dsp.AudioFileReader

Blocks
From Multimedia File

More About
• “Audio I/O: Buffering, Latency, and Throughput”

13-2

